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Summary 

This study had two goals, the first of which was to examine approaches for calculating the hydrodynamics 
of breaking waves and to assess the impact of hydrodynamic model errors on the prediction of radar 
backscatter. To address this, Reynolds-averaged Navier-Stokes (RANS) computations of stationary 
hydrofoil-generated breaking waves were carried out, including the modeling of the breaking region. 
These results were compared to experimental data. To determine the impact of the errors in 
hydrodynamic modeling on predictions of radar backscatter, a subset of the hydrodynamic results were 
used as input to the Veridian Scattering Model (VSM) and the results were compared to those of Ericson 
et al. (1999) which uses similar backscatter modeling but with experimentally measured hydrodynamic 
inputs. The second goal of this study was to use the information gained through this effort to define the 
research needs in this area. 

The conclusions of the study are that computations of breaking waves produce qualitatively correct 
behavior, in the sense that energy is dissipated, turbulence is produced in the breaking region and the 
wave amplitude is reduced; however, the results are not particularly accurate and the present methods are 
not robust. For some cases the wave amplitude was over-estimated and for some it was under-estimated, 
indicating incorrect amounts of dissipation from the breaking model, while for some cases, a converged 
solution could not be obtained at all. For a subset of the cases, the VSM radar backscatter model was 
used to estimate both the RMS surface fluctuation level and the radar cross-section (RCS) for X-Band at 
45 degrees incidence. The RMS surface fluctuations in all cases drop too slowly as the short waves 
propagate downstream from the breaking region. This is traced to the fact that the RANS-predicted 
velocity field in the breaking region is not accurate. The radar cross-section was estimated using the 
small-perturbation method (SPM) and the results were compared to those generated using the SPM model 
with the correct hydrodynamic inputs, derived from experimental observations, presented in Ericson et al. 
(1999). Overall, the peak RCS values for the breaking region tend to be over-estimated by as much as 
12 dB, and the downstream RCS values tend to be over-estimated by as much as 25 dB when compared to 
the results of the SPM model using the correct hydrodynamic inputs. Hence, hydrodynamic errors 
incurred in modeling breaking waves can lead to significant errors in radar backscatter estimates. 

A number of areas where research is needed have been identified. In order to predict the behavior of 
breaking waves for flows of practical interest, approaches such as the Reynolds-averaged Navier-Stokes 
equations must be employed. This type of approach requires that some of the details of the flow must be 
represented by models which need to accurately reflect the important physical processes. The results of 
this study indicate that improvements must be made in virtually all aspects of modeling wave breaking. 
These include modeling the onset of wave breaking, modeling the generation of surface disturbances in 
the breaking region, predicting the propagation of short waves through and beyond the breaking region, 
and development of proper free-surface boundary conditions. Another important research area is 
development of more robust and efficient computational approaches, including radiation boundary 
conditions and efficient solvers. 

To undertake the development of improved modeling approaches, new, more detailed information on the 
behavior of breaking waves is required. There are two complementary ways in which this information 
can be obtained: The first is through direct numerical simulations (DNS) based on numerical solution of 
the exact governing equations for the three-dimensional time-evolution of breaking waves. DNS allows 
the details of the waves to be examined both qualitatively and quantitatively, and can provide access to 
un-measurable quantities such as the subsurface pressure fluctuations. These detailed data can be used to 
guide the development of the needed models. The drawback to this approach is that presently it can only 
be applied to relatively short breaking waves (i.e. waves substantially less than a meter in wavelength) 
and even then it taxes available computing resources. The second approach for obtaining the needed 
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information is experimental studies of breaking waves. Here, a more limited set of information can be 
obtained using available measurement technology, but this can be done for the range of scales from DNS 
to scales approaching situations of practical interest. Detailed measurement of surface structure, velocity 
and subsurface turbulence are needed. Through a coordinated, combined approach of DNS and 
experiments, the information necessary to develop first-principles models for wave breaking and the 
associated small-scale disturbances important for radar backscatter can be obtained. 

A final issue is the framework within which modeling of breaking waves should be addressed. Reynolds- 
averaged approaches do not exclude any of the physical processes which naturally occur in wave 
breaking, hence RANS approaches should be able to predict wave breaking accurately, given appropriate 
models. For robustness, it appears that a computational approach which admits overturning waves 
(multiple-valued free surface), such as a level-set or an improved surface-tracking approach, will be 
needed. Potential flow methods impose some requirements on the flow (inviscid, irrotational) which are 
violated in breaking waves; however, potential flow methods are significantly less demanding 
computationally. For this reason, potential flow methods would be attractive, if they could be extended to 
model wave breaking without resorting to ad-hoc approaches. This should be investigated as well. 
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Introduction 

Breaking waves on the ocean surface can yield a significant radar return; however, the prediction of radar 
backscatter from breaking waves is limited by our ability to predict the details of the mean velocity field 
and surface shape as well as the small-scale hydrodynamic disturbances which result from wave breaking. 
The first goal of this study was to examine approaches for calculating the hydrodynamics of breaking 
waves and to assess the impact of hydrodynamic model errors on the prediction of radar backscatter. To 
address this, first the hydrodynamic models were used to calculate the mean surface elevation and 
velocity fields for two-dimensional stationary hydrofoil-generated waves. These results were compared 
to available experimental data. To determine the impact of the errors in hydrodynamic modeling on 
predictions of radar backscatter, a subset of the hydrodynamic results were used as input to the Veridian 
Scattering Model (VSM). The VSM radar-cross-section results could then be compared to data to assess 
the end-to-end performance of the combined hydrodynamic-radar-backscatter modeling approach. 

The second goal of this study was to use the information gained through this effort to define the research 
needs in this area. To calculate radar backscatter, the two-dimensional energy spectrum of the small-scale 
waves is needed, along with the mean surface slope. The ability to calculate these quantities will be 
assessed, and the deficiencies in the approaches will be identified. This will identify areas where new 
approaches or new knowledge are required. 

Hydrodynamic predictions of waves can be made via numerical solution of the Navier-Stokes equations 
subject to the appropriate free-surface boundary conditions. For practical flows which are steady in the 
mean, simplifications to these equations must be made in order to make the computations feasible. Two 
approaches for this exist: potential flow, where viscous and rotational effects are formally eliminated 
from the equations, and Reynolds-averaged approaches, where the equations are time-averaged. Potential 
flow calculations are significantly faster, but cannot account for viscous effects or turbulence. Reynolds- 
averaged Navier-Stokes (RANS) calculations require significantly more computational effort, as well as 
turbulence modeling, but are a framework which can accommodate both viscous and turbulence effects. 

In typical calculations of waves with either RANS or potential flow, wave breaking is not considered and 
solutions can be obtained, even for very steep waves which in the real world would break. In this case, 
the surface elevation and velocity fields predicted are solutions to the equations, but are incorrect, and 
radar backscatter predictions based on these results will also be incorrect. If the waves become steep 
enough, either RANS or potential flow computations will fail unless a breaking model is invoked. 
Modeling the effects of wave breaking is presently relatively crude, relying on corrections to the surface 
pressure and velocity that stabilize the steep wave and prevent overturning. 

The small-scale unsteady surface disturbances generated by wave breaking are important for radar 
backscatter; however, modeling the generation of short waves by wave breaking has not been addressed 
in a significant way by the hydrodynamics community. An empirical model for the short-wave spectrum 
in the breaking region of a stationary wave has been developed (see e.g. Walker et al. 1996). This 
empirical spectrum is used in VSM (Ericson & Wackerman 2000) to prescribe the behavior of the short 
waves in the breaking region. The propagation of short waves as they leave the breaking region and 
interact with the surrounding surface velocity field is calculated via solution of the wave-action balance 
equations (Komen et al. 1994), which then provides the short-wave spectrum for the entire surface. To 
accomplish this, VSM requires a description of the large-scale mean hydrodynamics (surface elevation, 
surface velocity) along with a map of the breaking regions. These inputs are derived from either RANS 
or potential-flow solutions. An alternative approach is to specify a turbulence-related short-wave source 
term directly in the action balance equations (Walker 2000). This has not been applied to breaking 
waves, but has been used in other flows. 
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Given the short-wave spectrum, the radar backscatter can be estimated using different approximate 
theories. The comparisons to be made in this study will be for laboratory measurements at moderate 
incidence angles (±45°). For this case the small-perturbation method (SPM), as described by Ericson et al 
(1999) is used. 

In the following sections, first the hydrodynamic modeling is described and issues of model type and grid 
resolution are addressed. Then hydrodynamic results calculated for breaking waves are shown and 
compared to available experimental data. The hydrodynamic results are then used as a basis for radar 
backscatter predictions and again compared to experimental data. 
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Approach 

Hydrodynamic model calculations were carried out mainly using a Reynolds-averaged Navier-Stokes 
(RANS) approach; however, as a check on the accuracy of those solutions, potential flow calculations 
were performed as well for some cases. Results from two different RANS codes, CFDSHIP-IOWA and 
UNCLE, which have different numerical formulations, were used, so as to rule out systematic errors. The 
RANS solutions for some of the cases examined diverged, because the predicted waves became too steep 
and overturned. To deal with these cases, a wave-breaking model, which redistributes momentum and 
dissipates energy in the waves was used. Finally the RANS results for a subset of the cases were used as 
input to radar backscatter computations using VSM. The approaches used for each of these are described 
here. 

RANS Computations 

Reynolds Averaged Navier-Stokes (RANS) governing equations are: 

V-u = 0 (1) 

p —+ u-Vu =-V/? + UV
2
U-V-T,+pg (2) 

dt J 

where it is the Reynolds stress. The Reynolds stress is calculated either using the k-e model from the 
Boussinesq hypothesis or directly from a Reynolds-stress model (RSM). Boundary conditions imposed on 
the free surface is the kinematic boundary condition 

thi 
—- + u-Vr| = w      on z = r\(x,y,t), (3) 
dt 

and the dynamic boundary condition 

-pn + ii(Vu + VuT)-n = -pATMn. (4) 

The solution of the RANS equations is obtained using two Computational Fluid Dynamics (CFD) codes: 
CFDSHIP-IOWA and UNCLE. 

CFDSHIP-IOWA is based on the Finite Difference Method (FDM) that solves the equations in three- 
dimensional space and unsteady mode (Paterson et al., 2003). It includes a free surface tracking 
capability, where the computational grid is fitted to the free-surface boundary. Turbulence is modeled 
with a two-equation k-e model. The code is being used primarily for the study of ship hydrodynamics and 
is considered a state-of-the-art code for this type of problems. The code is parallelized and can be run 
using Message Passing Interface (MPI). 

UNCLE is based on the Finite Volume Method (FVM). The equations are solved in three-dimensions 
and the simulations can be performed both in steady and unsteady modes. The convection terms are 
discretized using the Roe's flux-splitting approach, and the momentum equations are solved in a coupled 
manner. Turbulence is modeled either with the k-e or full Reynolds Stress Model (RSM). The 
calculation of the turbulence model is decoupled from the calculation of the velocity components. It also 
has the surface tracking capability and can be run in parallel mode using MPI. 
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Potential Flow Computations 

In case of incompressible, inviscid, irrotational flow, it is possible to define a potential, <E>, so that the 
velocity is given by the gradient of a scalar potential function, 

u = V<D. 

Using such a definition of the potential, the governing equations can be rewritten as: 

V2<D = 0 

dt 

Consequently, the kinematic and dynamics boundary conditions become equal to: 

an 

(5) 

(6) 

(7) 

dt 
+ V<D• Vr| = <&      on z = r\(x,y,t) (8) 

p = 0 (9) 

The potential flow equations are solved using a de-singularized potential method (Scullen & Tuck, 1995; 
Scullen, 1998). The effects of the submerged hydrofoil are implemented with a linearly varying vortex 
panel method (Kuethe & Chow, 1986). This implementation is described in detail in the Appendix, 
below. 

a) 

Trough    Brewing 
Crfeist 

Hydrofoil 

b) 

iiiiiiiii 

c) 

i 

Looking 
Upwave 

JL 

Figure 1.   Flow geometry showing a) pressure and b) velocity fields; c) and d)  the morphology of the 
breaking wave (Furey et al,. 2003). 
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Breaking Model 

For hydrofoil-generated waves, a trough forms above the hydrofoil, followed by a wave train. If the 
disturbance caused by the foil is large enough, due either to the depth of the foil or its angle of attack, the 
initial wave crest will break. Typical pressure and velocity fields in such a case are shown in Figure la) 
and Figure lb). Theory indicates that the orbital velocities associated with the waves increase in 
proportion to the wave amplitude. When the orbital velocity at the wave crest exceeds the phase velocity 
of the waves, the waves will break. The process can be very abrupt as in the case of a plunging breaker, 
or more tempered as a spilling breaker (Figure lc and Figure Id). The spilling breaker causes both 
velocity and pressure modification close to the wave surface. Simulation of the wave under breaking 
conditions requires the inclusion of these effects. 

Figure 2. Schematic of the breaker and the definitions of the modeling parameters. 

A steady breaker can be modeled using the semi-analytical approach of Cointe & Tulin (1994). In this 
approach, the breaking region (the region of partially aerated white water forward of the breaking wave 
crest) is assumed to 'ride' on of the forward face of the wave. At the forward edge of the breaking region, 
the 'toe' of the breaker, the free-surface surface streamline becomes submerged under the breaking region 
and re-emerges at the wave crest (see the blue line in Figure 2). The weight of the breaking region 
increases the pressure along the free-surface streamline. If one assumes a shape and density for the 
breaking region, and further that the total head is conserved along the streamline, the velocity and 
pressure along the free-surface streamline under the breaking region can be determined. These quantities 
are then used in place of the usual free surface kinematic and dynamic boundary conditions, (3) and (4), 
respectively. From a momentum conservation standpoint, the force associated with the increased pressure 
acting on the free-surface streamline results in an increased drag on the hydrofoil, due solely to wave 
breaking. The approach as implemented can be described in reference to the schematic of the breaking 
wave crest, shown in Figure 2. Following the Rhee & Stern (2000) implementation, the breaking model 

is invoked for any wave crests which exhibit Q(x) > 15° anywhere between the trough and crest. Here, 
the blue line represents the free-surface streamline 5. The dotted line in Figure 2 represents the observed 
geometry of the breaking region which is approximated by a triangle (the red line). The toe of the breaker 
is located at the point labeled a, and its location can be specified in different ways; here, we will follow 
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Muscari & Di Mascio (2003) and define the vertical distance between the crest and the toe (points b and 
a) as 

h*=zb-za=0.64H, (10) 

where the choice of the coefficient 0.64 by Muscari & Di Mascio was based on the experimental data of 
Duncan (1983). It is assumed that there is a discontinuity in the velocity at a, given by 

",(*8) = ß"o(*J (H) 

where ß is a 'mixing' parameter with values between 0.5 and 0.7, and the value of u0 (xa) is determined 
by applying Bernoulli's equation on the streamline s upstream of a. This yields 

ul{xa) = c2-2gz{xa), (12) 

where c is the phase velocity of the wave (i.e. the flow velocity far upstream of the foil). In the breaking 
region, the pressure on the surface between a and b is assumed hydrostatic 

P(x)=98 
f D ^ 

Z(JC) + ^^/*(JC) 

v P J 
(13) 

The ratio pBW /p represents the ratio between the density of the water/air mixture within the breaker and 
pure water density. The value for this ratio was estimated by Cointe & Tulin (1994) to be 
0.2 < pBW I p < 0.6 where the lower limit represents incipient breaking and the top limit the strong 
breaking process; a value of 0.5 was used in the calculations. The height of the triangular breaker is 
calculated as 

h(x) = z{xb)-z(x). (14) 

Streamline velocity for any point between a and b is calculated using the Bernoulli equation and 
equations (11)—(14): 

u2(x) = u2{xa)+2[p{xa)-p(x)]. (15) 

By using the local surface slope, 6, and the streamline velocity us, the two surface velocity components 
are calculated as: 

u(x) = us(x)cosQ(x), w(x) = us(x)sir\B(x) (16) 

The surface pressure from (13) and the surface-velocity components (15) are then used to specify the 
boundary conditions in the breaking region. 

Short-Wave Modeling 

Reynolds-averaged or potential-flow approaches which can be used to calculate the mean surface- 
elevation and velocity fields; however, the short waves which are responsible for radar backscatter are 
not resolved using these approaches. The short-wave spectrum is modeled using VSM (Ericson & 
Wackerman 1999). In that approach, the breaking regions are identified using a vertical acceleration 
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criterion, an empirical short-wave spectrum is specified in the breaking region, and the evolution of the 
short-wave spectrum outside the breaking region is calculated using the wave-action balance equations. 
The breaking criterion is 

^<0A5g (17) 
Dt 

which identifies regions of large downward acceleration. In these regions the short-wave spectrum is 
assumed isotropic and is set to 

S(k) = 0.004ak~35   k>lnlLb (18) 
= 0 k<2ir/Lb 

where k is the wavenumber and Lb is the length of the breaking region in the wave-propagation direction. 

The factor a is given by 

or = exp 
3.5 lie Y*' 

(19) 

and is included to yield zero slope in the spectrum at k = 2irlLb. It only affects the spectrum very near 
the cutoff.   The propagation of the waves outside the breaking region is done using the wave action- 
balance equations which govern the evolution of the short-wave spectrum 

££ + V-(CgA) = - (20) 
dt s        CT 

where A is the wave-action spectrum (the energy spectral density divided by the wave frequency), Cg is 

the vector group velocity (the propagation velocity for the wave energy in both physical and spectral 
space) and the source term 5 represents the effects of wind growth, viscous dissipation, etc. 

The identification of the breaking region is a key element of the prediction of the short-wave spectrum, as 
it defines both the location of the breaking regions and the length of the breaking region, Lb. For the 
radar-cross-section comparisons below, the breaking region was determined in two ways. One was using 
the native VSM approach (based on the acceleration). The second approach used the information from 
the breaking model implemented in the RANS code (based on slope). 

Radar Backscatter Model 

The radar backscatter model used for this study was the small-perturbation method (SPM), described in 
Ericson et al. (1999). The SPM solution for radar backscatter is given by Valenzuela (1978) as 

os™ =8<|Y„(9/)| [V(kb) + V(-kb)], (21) 

where ¥ is the surface-elevation energy spectral density, ypp is a polarization-dependent reflection 

coefficient, 0, is the local incidence angle, k0 is the radar wavenumber, and kb = 2k0 sin 0, is the Bragg 
wavenumber. 
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RANS Implementation 

In this section the implementation issues unique to the hydrofoil-generated waves examined here are 
discussed. First wave reflections are discussed, along with methods for eliminating them. Then the 
computational domain is described. Finally the grid requirements are examined. 

The results indicate that in order to obtain a RANS solution, the domain must be large and the grid 
sufficiently stretched eliminate reflection from the upstream and downstream domain boundaries. 
Additional damping of the waves is sometimes needed. What was also learned is that as long as the flow 
about the foil is well resolved, the near-field solution for the free surface elevation, and hence the velocity 
field, will be accurately captured. If the grid resolution away from the foil is not adequate, the far field 
waves will be attenuated. This near-field accuracy vs. far-field attenuation has been seen in Kelvin-wake 
predictions, and is tied directly to grid resolution and its impact on wave propagation. 

Wave Reflections from Domain Boundaries 

The major issue in the simulation proved to be the reflection of waves from both upstream and 
downstream boundaries. The flow domain is initialized with the flat surface. Waves start to form during 
the initial transient and the wave train behind the hydrofoil moves towards the downstream boundary. 
Similarly, a single wave is generated continuously in front of the foil and propagates towards the 
upstream boundary. Once the waves reach the boundaries, they reflect and cause considerable 
oscillations in wave amplitudes within the domain. These oscillations are further enhanced at the 
boundaries and cause severe mass loss. Despite the fact that the calculations can continue in this mode, 
the convergence rate is reduced and the results lose physical meaning. 

Several authors observed the same issue in simulating the free surface flows (Iafrati et al., 2001; 
Brummelen et al., 2001; Muscari & Di Mascio, 2003). They proposed mesh extensions away from the 
region of interest thus resulting in increased numerical dissipation. In addition, both Iafrati et al. (2001) 
and Muscari & Di Mascio (2003) proposed wave damping. We used both methods to prevent the 
reflected waves. Mesh size was increased geometrically away from the region of interest resulting in 
cells a few hydrofoil lengths in size. Wave damping was implemented as well: 

^ + 3 + A = w_^ (22) 
dt       ox       oy 

where is Tj surface elevation and d is the damping factor. The damping factor was set to zero in the region 
of interest and increased geometrically away from it. 

Computational Domain 

Figure 3 shows details the computational grid or mesh. The mesh had increasingly larger cells away from 
the hydrofoil towards both ends of the computational domain, as shown in Figure 3a) and Figure 3c). The 
most commonly used mesh consisted of four blocks, each with 400x20 nodes in the plane. As can be 
seen in Figure 3b) the mesh around the hydrofoil was non-uniform with refinement in the boundary layer 
and at the front and trailing edges of the hydrofoil. Flow was quasi two-dimensional with symmetry 
boundary conditions imposed in the y-direction. Even though the considered geometry was two- 
dimensional, both UNCLE and CFDSHIP-IOWA can perform only three-dimensional calculations. As a 
result, simulations performed with UNCLE require meshes at least 3 cells thick, and CFDSHIP-IOWA at 
least 5 cells thick. 
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Figure 3.   Mesh used in the simulation: a) mesh extension before the hydrofoil, b) mesh detail around the 
hydrofoil, c) mesh extension after the hydrofoil. 

The entire wave profile calculated for the non-breaking wave case measured by Duncan (1983) is shown 
in Figure 4. The hydrofoil submergence depth in this case was 0.261 m. Observed can be that the surface 
is flat on both ends of the computational domain. This is a result of using wave damping and large cell 
sizes that induce large numerical diffusion. 
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Figure 4.   The calculated wave profile for the Duncan 0.261 m case shown for the entire computational 
domain. 

Grid Variations 

In order to establish the accuracy of the computations to be presented below for breaking waves, the CFD 
codes were applied to non-breaking wave cases. In these flows, the grid requirements and overall 
behavior of the computations were assessed, independent of the complications associated with modeling 
wave breaking. Simulations of the non-breaking waves were performed using the two RANS codes, 
CFDSHIP-IOWA and UNCLE. First, the sensitivity of the RANS simulations to the computational mesh 
was investigated. Next, the description of the RANS calculations and the details of the computational 
domain and other issues addressed in carrying out the RANS computations are presented. 
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It should be noted that the grid studies described in this section were carried out using a slightly imperfect 
geometry for the NACA 0012 hydrofoil used in the experimental work. This has no bearing on the results 
of the grid study. All the other results were for the precise geometries used in the experiments. 

Two mesh types were used in the RANS simulations to verify calculation sensitivity to the mesh type. A 
number of Cartesian meshes were used to produce most of the results generated for this study. An 
example of a Cartesian mesh, shown in Figure 5a) had fine grid spacing in the boundary layer, and at the 
leading and trailing edges of the hydrofoil. This Cartesian mesh had 32,000 points in the x-z plane. In 
addition to using different grid densities for the Cartesian meshes, a single C-mesh, shown in Figure 5b), 
was used. In the C-mesh, the grid wraps around the foil and is generally more orthogonal. The C-mesh 
was refined near the hydrofoil boundary, and it had 85,364 cells in two-dimensions. 

a) 

L. 
b) 

'Rs^sr*! 

Figure 5.   Meshes used in the simulations: a) Cartesian mesh and b) C-mesh. 

The comparison between the calculated wave profiles obtained on the two mesh types together with the 
experimental data are shown in Figure 6a). The predicted location and depth of the trough are in a very 
good agreement. The result obtained on the C-mesh has a slightly higher crest. This is primarily due to the 
higher mesh resolution in this case. The predicted pressure coefficient, Cp, distributions along the 

hydrofoil are shown in Figure 6b) Unfortunately, no experimental data are available for the pressure 
distribution. Flow acceleration is higher along the top hydrofoil surface in the case with the C-mesh. As a 
result, pressure drop along the same surface is more than for the Cartesian mesh. Nevertheless, the 
differences are not large and are not affecting the calculated wave profiles in a significant way. Due to the 
large number of cases that had to be calculated, increase in the computational time required for the C- 
mesh could not be afforded and all the simulations were performed on the Cartesian meshes. 

The results of a resolution study for the Cartesian meshes are shown in Figure 7. Several calculations 
were performed with both UNCLE and CFDSHIP-IOWA codes on meshes ranging from 32,000 grid 
points in the plane to 121,000 grid points in the plane. The comparison for the wave profiles is shown in 
Figure 7a). The results are all consistent for the initial trough depth and the height of the first crest. For 
the coarser meshes, the amplitude of the waves attenuates with downstream distance. The calculated 
results under-predict the depth of the trough and the height of the measured crest for all cases, when 
compared to the experimental data. The computational results are almost identical inside the region 
where the measurement data is available. Similarly, the predicted pressure distributions on the hydrofoil 
surface shown in Figure 7b) differ only slightly. The behavior of these results are consistent with those 
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discussed by Reed & Milgram (2000) for RANS calculations of Kelvin wave patterns. They showed that 
even though RANS computations could accurately reproduce the near-field wave pattern, the waves 
attenuated rapidly far from the ship. The results shown above indicate that this can be traced to 
inadequate grid resolution resulting in far-field attenuation. 

-0.02- 

0.4 0.6 
x[m] 

Figure 6.   Results calculated on the Cartesian and C-meshes for the Duncan 0.210 m case obtained with 
UNCLE. Shown are a) wave profiles and b) surface pressure distributions. 

-41 

Figure 7. 

0.4 0.6 
x[m\ 

Results calculated with CFDSHIP-IOWA and UNCLE for the Duncan 0.261 m case. Shown 
are a) wave profiles and b) surface pressure distributions. 
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Results 

In this section the results from RANS and potential-flow computations for non-breaking are presented. 
This is followed by results RANS computations for breaking waves using the Cointe & Tulin (1994) 
breaker model. The section closes with radar cross section computations using the RANS results as input. 

For the non-breaking waves, the main results indicate that while RANS and potential flow approaches are 
capable of accurately calculating the wavelength of hydrofoil-generated stationary breakers, potential 
flow methods tend to over-estimate the wave amplitude, while RANS appears to under-estimate the 
amplitude.   It should be noted that the amount of data available for comparison is limited in both extent, 
and type. Velocity fields along with surface elevation profiles would allow more detailed comparisons 
and more complete validation of calculations. 

For the breaking wave cases, three different data sets were examined and the model was shown to have 
qualitatively correct behavior; i.e. the energy is dissipated and turbulence is produced in the breaking 
region and the wave amplitude is reduced. The cases of Duncan (1983) were not successfully calculated, 
either with or without the breaking model. These breakers, including the incipient breaking case could 
not be converged to a steady solution. Given that steady solutions are obtained for non-breaking wave 
cases, this points to the breaking model as the problem; however the failure on the incipient breaking 
case which had a steady non-breaking solution remains unexplained. For the strongly breaking waves of 
Walker et al. (1996), the trough depth and the wavelength of the waves was well predicted using RANS, 
but the breaking model is too dissipative and leads to under-estimation of the following-wave amplitude. 
For the strongest breaker, however, it was not dissipative enough and the breaker height had to be 
increased to attain a non-overturning solution. Finally for the cases of Furey et al. (2003), the best match 
to the data using RANS was obtained with the free-stream velocity set to match the ADV velocity 
measurements. In general, the wavelength and the initial trough depth were well predicted.. The 
breaking wave crest height was also well predicted at the lower velocities, but over-estimated at the 
higher velocities, indicating that the level of energy dissipation caused by the model is inappropriate. 

Finally, the results of two lower-angle-of-attack cases of Walker et al (1996) were used as input to the 
VSM radar backscatter model and radar cross-section was estimated for X-Band HH and VV polarization 
at 45 degrees incidence, looking both up-wave and down-wave. VSM assigns an empirical wave 
spectrum in the breaking region and the calculates the propagation of the short waves outside that region 
using the wave-action balance equations.   The main input to VSM are the surface slopes, surface 
velocities, and a breaking mask, showing the extent of the breaking region. In addition to RCS, VSM 
calculates the RMS surface fluctuation level, for comparison to measurements. The RMS surface 
fluctuations in all cases drop too slowly as the waves propagate downstream from the breaking region. 
This is traced to the fact that the RANS-predicted velocity in the breaking region is not accurate; this is a 
limitation of the breaking model which prescribes the surface velocity in the breaking region.   Overall the 
peak RCS values for the breaking region, tend to be over-estimated by up to 5 dB, while the downstream 
RCS values are over-estimated by up to 25 dB. 

Non-Breaking Waves 

In order to establish the accuracy of the computations to be presented below for breaking waves, the CFD 
codes were applied to non-breaking wave cases. Computations were performed using RANS and 
potential flow. Profiles of non-breaking waves were measured by Duncan (1983) and by Furey et al. 
(2003) and are used for comparison. In general, the results for both approaches match the wavelength of 
the experimentally observed waves. The potential flow approach, due to its lack of viscous effects will 
always predict slightly larger lift on the hydrofoil than is realistic and, as a result, it will over-estimate the 
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initial trough depth and the following wave crest heights. In these results, the potential flow approach 
predicted initial trough depths and crest height which were generally 10-15% greater that the RANS 
approach. For the case of Furey et al. (2003), the potential flow approach over-estimated the wave 
amplitude by about 10%. The RANS computations provide a better match while slightly under- 
estimating the amplitude; however, there is a positive bias in the RANS results. For the case of Duncan 
(1983) both approaches under-estimated the wave amplitude by 10% or more. The fact that the measured 
waves are larger than the potential flow approach predicts may indicate a problem with the data. 
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Figure 8. RANS computational results for the flow over the submerged hydrofoil moving with speed 0.8 
m/s, depth of submergence 0.261m and angle of attack 5° (Duncan, 1983): a) dynamic 
pressure field, b) axial velocity field, and c) turbulence kinetic energy field. 
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The flow field results for Duncan's case are shown in Figure 8. It can be seen that the simulations predict 
the expected flow behavior. The acceleration of flow above the hydrofoil causes pressure drop and the 
formation of the first through. The surface then rises behind the foil for the initial crest. In the velocity 
field in Figure 8b) and the turbulence kinetic energy field in Figure 8c) the wake of the foil can be seen, 
but there is no turbulence near the surface since the wave is not breaking. Figure 9 shows a comparison 
of the measured surface-elevation profile and those computed using the RANS and potential flow 
approaches. For both approaches, the wavelength of the waves in the computations match the data well. 
The potential flow results under-estimate the wave amplitude by about 10%, and the RANS results are 
another 10% lower that that. (The RANS results are for a relatively low resolution computation, and as 
discussed above, the waves behind initial crest exhibit attenuation; however, the initial trough and crest 
are unaffected.) Since potential flow results would naturally over-estimate the wave amplitude, and the 
behavior of the RANS and potential flow results are consistent, there appears to be a problem with this 
particular data set. This is further supported by the results shown above; this case was used for the grid 
studies, and was thoroughly examined using multiple grid resolutions, topologies, and even different 
RANS formulations. All of these were shown to produce consistent results. 

Figure 10 shows a comparison of the experimental data of Furey et al. (2003) and results from potential 
flow and RANS computations. It should be noted that the free stream velocity for the calculations was set 
to match that measured using the acoustic anemometer downstream of the hydrofoil. For this case, again, 
the wavelength of the waves is well captured by both approaches. The amplitude of the waves calculated 
using potential flow is about 10% larger than the experiments indicate; this is consistent with the 
expectations for potential flow. The RANS results match the amplitude better, within a few percent; 
however, there is a slight positive bias in the surface elevations estimates. 
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Figure 9.   Computational results obtained with CFDSHIP-IOWA and the potential flow code for the 
Duncan 0.261 m case. 
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Figure 10. Comparison between the results obtained with CFDSHIP-IOWA and the potential flow code 
for the first case by Furey et al. (2003) - CWC Case 1. 

Breaking Waves 

Results for the Cases of Duncan 

The measurements by Duncan (1983) were performed using a NACA0012 hydrofoil with a chord of 
0.203 m. The upstream velocity was 0.8 m/s, and the hydrofoil angle of attack was kept constant at 5°. 
The corresponding Reynolds and Froude numbers based on the hydrofoil length were 1.42xl05 and 0.566. 
Measurements were performed at varying submergence depths, D. RANS computations were done for 
Z)=0.193 m, and D=0.185 m. The first case was called by Duncan 'incipient breaking' because the wave 
could exist either as a non-breaking wave or a breaking wave depending on whether there were outside 
disturbances to the free surface. This case was computed with and without the wave breaking model. 
The final case was a stable breaker, and it was calculated using the breaking model. 

Predicted wave profiles together with the measurements are shown in Figure 11. The case at Z)=0.193 m 
was run for 200,000 time steps and did not achieve a steady solution; i.e. the wave train continued to 
oscillate in amplitude. After that the simulations were restarted for another 100,000 time steps with the 
breaking wave model turned on. Experience with other breaking and non-breaking cases indicates that 
this should have been sufficient to achieve a steady-state solution. Snap-shots of the wave field for both 
conditions are shown in Figure 11, where it appears that the predicted amplitude and wavelength are 
reasonable, but the solution would not converge. Also shown in Figure 11 is the result for the D=0.185 m 
case. In this case, similar behavior was observed, with no steady state solution being obtained. Again, 
the wavelength and amplitude predicted are reasonable. 
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Figure 11. Comparison between the predicted and measured wave profiles for the cases measured by 
Duncan (1983). Plots on the left and bottom were obtained without the breaking wave model, 
while plots on the right were obtained with the breaking wave model turned on. 

Flow field results are shown in Figure 12. for the the case with the hydrofoil depth equal to 0.185 m. The 
simulation was done with the wave breaking model. The result of the additional pressure exerted by the 
breaker on the wave surface can be seen especially in the velocity and turbulence kinetic energy plots. 
Velocity slows under the breaker, Figure 12b). The velocity discontinuity causes generation of turbulence 
that can be seen in Figure 12c). In these results, there are no apparent problems which would explain the 
inability to achieve a steady-state solution. Given that the computational approach works well in the 
absence of wave breaking, for these breaking or incipient breaking waves, the fault most likely lies with 
the wave-breaking model. 

Results for the Cases of Walker et al. 

The measurements done by Walker et al. (1996) were performed using the NACA0015 hydrofoil with a 
0.304 m chord. The hydrofoil submergence depth was constant at 0.267 m. The upstream velocity varied 
between 1.08 m/s and 1.10 m/s. The corresponding Reynolds and Froude numbers were 3.30xl05 and 
0.630. The calculations were performed at three different hydrofoil angles: a=3°, a=4°, and a=6°. The 
Walker et al. (1996) measurements were performed at considerably stronger wave breaking conditions 
(more energy dissipation) than those of Duncan (1983). These cases could not be simulated without the 
use of the breaking wave model. Without the breaking model the waves tend to overturn almost 
immediately after the simulation starts. Since the CFD model does not admit overturning waves, the 
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simulation continues while the results are not physical. Therefore, all the simulations for the Walker et cd. 
(1996) cases were done using the breaking wave model. 
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Figure 12. Computational results for the flow over the submerged hydrofoil moving with speed 0.8 m/s, 
depth of submergence 0.185 m and angle of attack 5° (Duncan, 1983): a) dynamic pressure 
field, b) axial velocity field, and c) turbulence kinetic energy field. 

The results of the RANS calculations for the cases of Walker et al. (1996) are shown in Figure 13.    Good 
agreement with the experimental data can be observed for the cases at 3° and 4° hydrofoil angle. The 
location and depth of the first trough is mostly in agreement with the data, while the following crest is 
under-predicted. As a result, the following waves are also smaller than measured. The wavelengths and 
phase of the waves are reasonably well predicted. The good agreement of the initial trough depths 
indicates the basic RANS solution is reasonable. The under-estimation of the breaking wave crest height 
is a results of the breaking wave model dissipating too much energy. It should be noted that the breaking 

19 DW200392.8.F.Nov04 



model was mainly developed using the data of Duncan (1983) for waves which were not nearly as 
dissipative as these. 
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Figure 13. Comparison between the predicted and measured wave profiles for the cases measured by 
Walker et cd. (1996). Simulations were performed at different breaker heights, h*, used in the 
breaking wave model. 

For the 6° case, shown at the bottom of Figure 13, the simulation became unstable and the wave started to 
overturn, leading to a non-physical solution. The reason for this was that the breaking wave model was 
not able to dissipate enough energy to stabilize the wave. For this case, the experimentally observed 
breaker height h* was approximately equal to the wave height H. Setting h*=H (rather than the literature 
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value of 0.64//) resulted in a stable calculation, but the breaking region was now confined to a small 
region in the trough of the wave. This results in a strange inflection in the trough of the wave and is 
probably non-physical. 

Results for the Cases of Furey et al. 

Recently, Furey et al. (2003) performed wave measurements in considerably larger channel than the two 
previous experiments. They used hydrofoil NACA0012 profile with a chord 1.8 m in length. The 
distance between the channel floor and the hydrofoil attachment point was 0.9 m. Submergence depth 
varied slightly between 1.75 m and 1.79 m. Hydrofoil angle of attack was set to 5.5+0.5°. Measurements 
were performed at different inlet velocities between 1.8 m/s and 2.6 m/s that were also used in the 
calculations: w=1.8 m/s and o*=5.5°, «=2.2 m/s and a=5.5°; «=2.3 m/s and «t=5.5°; w=2.6 m/s and 
o=5.5°. 

These inlet velocities were measured with a pitot tube upstream of the foil. The simulations were 
performed using the breaking wave model with the original parameters (h*=0.64H). Comparison between 
the predictions and the measurements is shown in the left column of Figure 14. The agreement is the 
worst for the first, non-breaking case. The agreement slightly improves at higher inlet velocities and 
under breaking wave conditions. However, wave amplitudes are under predicted for all the cases. All 
calculated troughs are located upstream of their measured location. 

Surface velocity was measured also with the acoustic doppler velocimeter (ADV). The ADV- measured 
velocities were higher than the values obtained using the pitot tube. Another set of calculations was 
performed with these values at the inlet and the results are shown in the right column of Figure 14. The 
agreement between the data and the measurements are considerably better. The predicted location of 
troughs and crests is in agreement with the measurements. The overall wave profiles are in excellent 
agreement for the first two cases. Further increase in the inlet velocity causes slightly under-predicted 
troughs and over predicted crests. A possible cause for such behavior might be the deficiency of the wave 
breaking model. 

21 DW200392.8.F.Nov04 



Non-breaking 
wave 
case 

Non-breaking 
wave 
case 

0.1 

o 

& 
N-0.05 

-0.15 
 Furey el al (2003); «=2.1 (1JB6) m/s 
 Calculation 

2 4 6 
*[m] 

Breaking 
wave 
case 

0.15 

0.1 

0.05 

e   ° 
--0.05 

-0.1 

-0.15 

-0.2 

-0.25 

1  
  

 1
 

■       iii 

- \-.;.-  ; I .'.iV....'. i '. i./  

- K  U i.\i£..../\ >..<.  
- }■■ «.././ |  

— Furey el al (2003); u=22 m/s 
— Calculation 

Breaking 
wave 
case 

2 4 6 
*[m] 

-2 

0.15- 

0.1- 

0.05- 

I      -' 
--0.05- 

-0.1- 

-0.15- 

1 Till 

f    V          '• I'    V 

<i 

:   /      \\          I i        ! 

. -, 1.       :X\ 1 l.\ jL 

■ /     ■ Yv^ 

*J 
-425-  1.. 

— Furey el al (2003); u=22 (26) m/s 
— Calculation 

2 4 6 
*[m] 

Breaking 
wave 
case 

Furey et al (2003); «=23 n 
Calculation 

2 4 6 
xfm] 

Breaking 
wave 
case 

03 

0.2 

0.1 

I   • 
-0.1 

-0.2 

-03 

1 1 1 r 

— Furey el al (2003); II=23 (27) m/s 
-- Calculation 

2 4 6 
*[m] 

8 10 

Breaking 
wave 
case 

0.2 

-0.2 

-0.4 

- Furey el al (2003); u=16 m/s 
' Calculation 

2 4 6 
jc[m] 

10 

Breaking 
wave 
case 

0.4 

0.3 

0.2 

0.1 

I   o 
N 

-0.1 

-0.2 

-03 

-0.4 

-i i r 

 Furey et al (2003); n=2.6 (3.0) m/s 
— Calculation 

2 4 6 
Jttm] 

Figure 14. Comparison between the predicted and measured wave profiles for the data by Furey et al. 
(2003). Simulations were performed at inlet velocities measured by the Pitot tube (left 
column) and by the Acoustic Doppler Velocimeter (right column). 
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Radar Backscatter Modeling 

For the cases of Walker et al. (1996) detailed radar backscatter measurements are available, as presented 
in that study, and later in Ericson et al. (1999). The modeling approach to be used is the small- 
perturbation method, or SPM, advanced by Valenzuela (1978). This method was applied to the situation 
examined here by Ericson et al. (1999), using the experimentally measured short-wave spectrum and 
surface slope as input to the model The results are shown in Figure 15, where it is seen that the 
agreement is quite good for the region downstream of the breaking wave crest. The backscatter from the 
breaking crest is not well predicted using this model, since the surface roughness exceeds the limits of 
applicability of the theory. For the up-wave look directions the breaking crest returns are over-predicted 
for both HH and VV, while for down-wave look direction the breaking crest return is slightly over- 
predicted for VV and under-predicted for HH. In general, the lack of polarization dependence of the 
scattering in the breaking region is not captured. 
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Figure 15. Radar cross-section results for the small-perturbation method (SPM) calculated using the 
experimentally measured short-wave spectrum, compared to experimental observations for 
both HH and VV polarization (from Ericson et al. 1999): a) 3 degree angle of attack, down- 
wave look direction; b) 3 degree angle of attack, up-wave look direction; c) 4 degree angle of 
attack, down-wave look direction; d) 4 degree angle of attack, up-wave look direction. 
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It should be noted that in Ericson et al. (1999), the integral equation method (EM) was the best- 
performing model over the entire region of interest. For this study, the VSM code was used for the 
backscatter calculations. The IEM implementation in VSM is only approximate, and not the complete 
model advanced by Fung et al. (1992) and used by Ericson et al. (1999). For this reason the comparisons 
presented below are based on the SPM, rather than IEM. Even though the agreement of SPM model is 
not exact, valid comparisons can still be made. If the hydrodynamic modeling produces a mean surface 
elevation profile and a short wave spectrum which matches the experimental spectrum observations, the 
RCS predictions will match those shown in Figure 15. 

The hydrodynamic results generated using the RANS models shown above were used as input for VSM. 
The RCS results from VSM for the 3 degree angle of attack are shown in Figure 16 along with the 
predicted mean surface elevation and RMS surface fluctuation level. Figure 16 also includes 
experimental observations for all these quantities. 

In Figure 16a) the predicted mean surface elevation is compared to data. As discussed above, the height 
of the breaking wave crest, and that of the following crests was under-estimated. The model predictions 
for the RMS surface elevation were obtained by integrating the short-wave spectrum estimated using 
VSM. Two results are shown in Figure 16b) for comparison to the experimental data: One is that 
obtained when VSM is allowed to determine the breaking region based on the vertical acceleration. The 
other is for the breaking region defined by the RANS wave-breaking model. For the former case, the 
peak RMS surface elevation, which occurs in the breaking crest region, is under-estimated by roughly a 
factor of two. The modeled RMS decays more slowly than the experiments indicate, and the agreement is 
not bad downstream of the breaking region. Since the short waves which establish the RMS in this 
downstream region are generated in the breaking region, and their energy level is too low in the breaking 
region, the agreement downstream is clearly the result of offsetting errors in the generation and 
propagation of the short waves. When the RANS code is used to determine the breaking region, the RMS 
is roughly twice the experimental value in the breaking region, and again decays too slowly downstream. 
For this case, the RMS remains elevated over the following waves. The reason for the under-estimation 
for the decay in the RMS surface elevation is discussed below. 

Figure 16c)- Figure 16f) show VSM predictions of RCS for the 3 degree angle of attack case for HH and 
VV polarization and for up-wave and down-wave look direction. Two computational results are shown, 
one using VSM to determine the breaking region and the other using the RANS-indicated breaking 
region, along with experimental data from Ericson et al. (1999). First we examine the results for the 
RANS-indicated breaking. The computational radar backscatter results for the breaking wave crest for 
HH up-wave (Figure 16c) match the experimental data, while for HH down-wave (Figure 16d) the 
predictions are roughly 5 dB high. Figure 15a) shows that the 'correct' SPM-predicted down-wave HH 
backscatter from the breaking crest is actually lower by more than 10 dB than for the up-wave look 
direction. Figure 16c) and d) shows that the RANS-based up-wave and down-wave returns are nearly 
equal. This discrepancy results from both the error in the size of the breaking region and the lower- 
amplitude, relatively flat breaking crest. The computational results for VV up-wave in the breaking crest 
region (Figure 16e) are a few dB higher than the HH results, which is consistent with the data and with 
the behavior of the SPM model. Similar behavior is seen in the VV down-wave predictions for the 
breaking crest (Figure 16f). Downstream of the breaking crest, the decay of the radar cross-section 
mirrors the too-slow decay of the RMS surface roughness, yielding over-estimations of the backscatter by 
as much as 25 dB, while the modulations have about the right amplitude. For the VSM-indicated 
breaking, the results are generally similar; however, the lower RMS fluctuation levels results in generally 
lower backscatter. 
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Figure 16. Hydrodynamic and SPM radar backscatter predictions for 3 degree case of Walker et al. 
(1996): a) mean surface elevation; b) RMS surface elevation; c) radar cross section for HH 
polarization, up-wave look direction; d) HH, down-wave; e) VV, up-wave; f) VV, down- 
wave 
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The lower predicted decay rate of the short waves downstream of the breaking region shown in Figure 
16b) is related to the prediction of the velocity field by the RANS models. As the waves generated in the 
breaking region propagate downstream they interact with an accelerating fluid velocity. This acceleration 
will reduce the wave energy, i.e. the waves are 'stretched' as they leave the breaking region, lowering 
their amplitude. The lack of a rapid drop in RMS just downstream of the breaking region indicates that 
the waves do not undergo this acceleration in the model calculations. This can come about in two 
possible ways. Since the wave spectrum is prescribed in the indicated breaking region, it is is only 
influenced by the fluid velocities outside this region; hence, if the indicated breaking region extends 
beyond this area of rapid acceleration, the wave will never experience it. Alternatively if the 
hydrodynamic model for breaking under-estimates this acceleration, the waves will not be reduced in 
amplitude as much either. The latter explanation fits the present case; Figure 17 shows a comparison of 
experimental data for the surface velocity from Ericson et al. (1999) to that obtained using RANS. In the 
experiments, the velocity in the breaking region is essentially zero; however, the RANS calculations 
indicate that the velocity in the breaking region is only reduced by half. This indicates that the breaking 
model is producing a poor estimate of the velocities in the breaking region and this directly affects the 
short wave spectrum prediction and that for the RMS surface elevation. 

Ü 
S3 u 

I 
o o 
0) 
> 
<u u 

■g 
3 

CO 

150 

100 

Figure 17. Comparison of measured (upper) and predicted (lower) streamwise velocity components at 
surface for the 3 degree angle of attack wave from Ericson et al. (1999). Experimental data 
from Ericson et al., computations using CFDSHIP-IOWA. The dashed red line indicates the 
location of breaking in the RANS predictions. 
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Figure 18 shows the results from VSM for the 4 degree case of Walker et al. Overall the behavior is 
similar to that of the 3 degree case shown in Figure 16. The main difference is the small degree of 
modulation in the downstream RCS for RANS-predicted breaking region. This is a result of the lower 
amplitude of the following waves, when compared to the 3 degree case, consistent with greater energy 
dissipation due to breaking than in the 3 degree case. The difference between the downstream RCS 
modulations for the RANS- and VSM-indicated breaking regions is due to the broader spectrum (from the 
larger breaking region) in the RANS case, and the smaller influence of the orbital velocities on the longer 
waves. 

28 DW200392.8.F.Nov04 



Conclusions and Recommendations 

Conclusions 

This study had two goals, the first of which was to examine approaches for calculating the hydrodynamics 
of breaking waves and to assess the impact of hydrodynamic model errors on the prediction of radar 
backscatter. To address this, RANS computations of stationary hydrofoil-generated breaking waves were 
carried out, including the modeling of the breaking region. These results were compared to experimental 
data. A subset of these hydrodynamic results was used as input to the SPM radar backscatter model in the 
VSM code and the RCS predictions were compared to those obtained using the same model with 
experimentally measured hydrodynamic inputs. The second goal of this study was to use the information 
gained through this effort to define the research needs in this area. 

The results show that in order to obtain a RANS solution, the domain must be large and the grid 
sufficiently stretched to eliminate reflection from the upstream and downstream domain boundaries. 
Additional damping of the waves is sometimes needed. What was also learned is that as long as the flow 
near the foil is well resolved, the near-field solution for the free surface elevation and velocity field will 
be accurately captured; however, if the grid resolution is not adequate, the far field waves will be 
attenuated. This near-field accuracy vs. far-field attenuation has been seen in Kelvin-wake predictions, 
and is tied directly to grid resolution and its impact on wave propagation. 

For the non-breaking waves, the main results indicate that while RANS and potential flow approaches are 
capable of accurately calculating the wavelength of hydrofoil-generated stationary breakers, potential 
flow methods tend to over-estimate the wave amplitude, while RANS appears to under-estimate the 
amplitude. It should be noted that the amount of data available for comparison is limited in both extent, 
and type. Velocity fields along with surface elevation profiles would allow more detailed comparisons 
and more complete validation of calculations. 

For the breaking wave cases, the breaker model was shown to have qualitatively correct behavior; i.e. 
energy is dissipated and turbulence is produced in the breaking region and the wave amplitude is reduced, 
but was not robust or particularly accurate. There were cases which could not be driven to a converged 
solution. For the strongly breaking waves of Walker et al. (1996), the trough depth and the wavelength of 
the waves was well predicted using RANS, but the breaking model was too dissipative and led to under- 
estimation of the following-wave amplitude. For the strongest breaker, however, it was not dissipative 
enough and the breaker height had to be increased to attain a non-overturning solution. For the cases of 
Furey et al. (2003), the wavelength and the initial trough depth were well predicted.. The breaking wave 
crest height was also well predicted at the lower velocities, but over-estimated at the higher velocities, 
indicating that the level of energy dissipation caused by the model is inappropriate at higher speeds. 

Finally, the results of two lower-angle-of-attack cases of Walker et al (1996) were used as input to the 
VSM radar backscatter model and radar cross-section was estimated for X-Band HH and VV polarization 
at 45 degrees incidence, looking both up-wave and down-wave. In addition to RCS, VSM calculates the 
RMS surface fluctuation level, for comparison to measurements. The RMS surface fluctuations in all 
cases drop too slowly as the short waves propagate downstream from the breaking region. This is traced 
to the fact that the RANS-predicted velocity in the breaking region is not accurate; this is a limitation of 
the breaking model which prescribes the surface velocity in the breaking region. Overall the peak RCS 
values, for the breaking region, tend to be over-estimated by as much as 12 dB, and the downstream RCS 
values tend to be over-estimated by as much as 25 dB. Hence, hydrodynamic errors incurred in modeling 
breaking waves can lead to significant errors in radar backscatter estimates. 
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Research Needs 

In order to predict the behavior of breaking waves for flows of practical interest, approaches such as the 
Reynolds-averaged Navier-Stokes equations must be employed. This type of approach requires that 
some of the details of the flow must be represented by models which need to accurately reflect the 
physical mechanisms at play. The results of this study indicate areas where more knowledge and 
understating are required in order to develop the needed models, and point to a requirement for new, more 
detailed information on the behavior of breaking waves. There are two ways in which this information 
can be obtained: The first is through direct numerical simulations (DNS) based on numerical solution of 
the exact governing equations for the three-dimensional time-evolution of breaking waves. DNS allows 
the details of the waves to be examined both qualitatively and quantitatively, and can provide access to 
un-measurable quantities such as the subsurface pressure fluctuations. These detailed data can be used to 
guide the development of the needed models. The drawback to this approach is that presently it can only 
be applied to small-scale waves (i.e. waves substantially less than a meter in wavelength) and even then it 
taxes available computing resources. The second approach is experimental studies of breaking waves, 
where a more limited set of information can be obtained using available measurement technology, but this 
can be done at larger scale, approaching the scale of situations of practical interest. Detailed 
measurement of surface structure, velocity and subsurface turbulence are needed. Through a coordinated, 
combined approach of DNS and experiments, the information necessary to develop first-principles 
models for wave breaking and the associated small-scale disturbances important for radar backscatter can 
be obtained. 

Beyond the general need for more detailed information about the behavior of breaking waves, the results 
of this study indicate some specific areas where improvements must be made. The first is application of 
computational models to steep waves, where more robust and efficient computational approaches are 
clearly needed. The second is modeling of the effects of wave breaking, where issues such as modeling 
the turbulence in the breaking region, and appropriate ways to represent free-surface boundary conditions, 
etc. in the breaking region need to be addressed. And the third is use of hydrodynamic model results in 
radar backscatter prediction. These point clearly to research needs in these areas and are presented below. 

A final issue is the framework within which modeling of breaking waves should be addressed. Unlike 
potential-flow methods, Reynolds-averaged approaches do not exclude any of the physical processes 
which naturally occur in wave breaking; however, potential-flow methods are significantly less 
demanding computationally. While RANS approaches should be able to predict wave breaking 
accurately, given appropriate models, it would be desirable to be able to use potential flow methods. This 
is also discussed below. 

Application of CFD to Steep Waves 

One of the unexpected developments in this study was the difficulty encountered in carrying out the 
computations of apparently simple, hydrofoil-generated waves, even for steep, non-breaking cases. One 
of the main difficulties was due to the lack of appropriate radiation boundary conditions, necessary 
eliminate wave reflections from the domain boundaries. Present approaches extend the size of the domain 
and introduce either implicit or explicit damping of the waves, so that the waves never actually reach the 
boundaries. This leads to unreasonably large computational domains and significantly greater 
computational-time requirements. The other main issue was the need for robustness in free-surface 
computations. The free-surface-tracking approaches implemented in the codes used above, where the 
computational domain is mapped to the instantaneous free surface, implicitly assumes that the surface is a 
single-valued function of the horizontal coordinates. This eliminates the possibility of overturning in the 
computations and so if breaking is initiated by overturning, this cannot be captured directly. A 
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computational approach which admits a multiple-valued free surface description, such as a level-set or 
more robust surface-tracking approach is needed. 

Modeling the Effects of Wave Breaking 

If a wave becomes steep enough, a portion of its energy is dissipated via wave breaking. Overturning of 
the crest and turbulence generation, accompanied by transfer of momentum from the wave orbital 
motions to the mean drift flow accomplish this dissipation. The breaker model investigated here 
approaches wave breaking by attempting to add an appropriate amount of pressure to the free surface in 
the breaking region, in an attempt to stabilize it and keep it from overturning. The rate of work done on 
the surface by this pressure equals the dissipation due to breaking. This approach ignores the fact that in 
even in the transient leading to ultimately steady breaking, some overturning occurs, and it requires 
significant empiricism in specifying that stabilizing pressure. A final, robust model for wave breaking 
will probably not be of this form. The results of this study raises additional significant issues which will 
need to be addressed by the ultimate approach. These include 1) determining the onset of wave breaking, 
2) modeling the generation of surface disturbances in the breaking region, and 3) modeling the generation 
of waves in the breaking region and their subsequent propagation. 

Modeling approaches for the onset of wave breaking do not appear to replicate observed behavior very 
well. As a wave becomes steeper, the water particle velocities increase roughly in proportion to its 
steepness. Eventually, as the steepness increases, the water particles near the crest begin to move at a 
speed greater that the wave propagation velocity. This leads to overturning and collapse of the wave crest 
into breaking. In present modeling approaches, the onset of breaking is identified by examining wave 
steepness (greater than 15 degrees) or downward accelerations (greater than 0.15g). The problem with 
these approaches is that the thresholds are generally required to be substantially lower than observed in 
waves just before breaking occurs naturally. In the final model for wave breaking, the natural evolution 
of a steep wave to a state of breaking should be captured. 

The generation of surface disturbances in the breaking region is important for radar backscatter as well as 
for hydrodynamics. The effects on radar backscatter are clear. For hydrodynamics, the disturbances are 
caused by the subsurface turbulent fluctuations, and this process affects the dynamics of the turbulence 
and thereby the overall evolution and behavior of the flow. The generation of surface disturbances has 
not been investigated significantly, and it is not clear how modeling of this can be accomplished in a 
RANS context. Presently these disturbances are treated as waves with a prescribed spectrum, but it is not 
clear that all the surface fluctuations in the breaking region can be appropriately described this way. This 
is an area where guidance from DNS computations of breaking waves could be of great use for model 
development. 

The disturbances described above, while important in their own right, also serve as initial conditions for 
waves which propagate through and beyond the breaking region and over the water surface. These waves 
contribute significantly to radar backscatter. They also interact with the surrounding velocity field and 
can steepen and break themselves. These waves are described statistically by the wave action balance 
equations but, given the strong interactions of the waves with other disturbances in the breaking region 
and the large velocity gradients involved, it is not clear that this description which assumes slow spatial 
and temporal changes, is adequate. In addition, there are source terms (turbulent wave generation and 
dissipation) which are recognized as necessary which are not included in the present formulations and 
require development. This is again an area where DNS would be instructive and useful. 
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Hydrodynamic Results for Radar Backscatter Modeling 

Modeling radar backscatter presently relies primarily on a statistical description of the small-scale 
disturbances on the water surface along with information on the mean surface slope. In an ideal world, a 
three-dimensional time-varying description of the water surface at all scales would be obtainable, and 
from this a radar backscatter model could make use of whatever statistical description of the surface is 
most appropriate. Since this detailed description is not obtainable for practical flows, hydrodynamic 
models which produce the necessary statistical description should be the focus of future research. As our 
understanding of the behavior of the water surface in the breaking region becomes more clear, it may 
prove that the wave spectrum alone is an inadequate description. In that case, alternative descriptions 
would need to be explored and may influence the modeling approaches used for the small-scale 
disturbances, and possibly even those adopted for radar backscatter modeling. 

Computational Framework for Wave Breaking Models 

A final issue is the framework within which modeling of breaking waves should be addressed. The exact 
equations are known, but cannot be solved for large-scale flows and so reduced forms of the equations 
must be used. A Reynolds averaged approach, while approximate, makes no assumptions about the 
nature of the flow, and includes turbulence and viscous effects. Potential flow formulations require that 
the flow be inviscid and irrotational, and exclude turbulence. Since turbulence and viscous effects appear 
to play significant roles in breaking waves, the RANS approach would appear to be a natural framework 
in which to treat breaking waves; however, the speed at which potential flow computations can be carried 
out make this an attractive platform for breaking wave computations. Their usefulness will hinge on 
development of a physically reasonable approach for modeling wave breaking. While potential flow 
approaches may ultimately prove to be too empirical or ad-hoc, they warrant investigation. 
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Appendix: Nonlinear Free-Surface Potential-Flow Computation 
Involving a Hydrofoil 

Methodology 

The two-dimensional potential flow and nonlinear free-surface that results from submerging a hydrofoil 
some fixed depth beneath the free surface of a finite depth of water was computed. The developed 
computational method is a combination of two potential-flow approaches. An iterative de-singularized 
approach [1, 2] is used to compute the nonlinear free-surface, and a linearly-varying vortex-strength panel 
approach, similar to common vortex-panel methods [3,4], is used to compute the flow about the 
hydrofoil. Combining these two approaches was achieved through three steps. 

First, the de-singularized nonlinear free-surface potential-flow approach, presented by Scullen [1, 2], was 
implemented and verified. This approach utilizes a distribution of discrete singularities (i.e. sources, 
doublets, and vortices), placed outside the fluid domain, and an iterative approach to simultaneously 
satisfy the various boundary conditions at the free surface. At each iteration, new singularity strengths are 
determined by the solution of a system of linear equations, and the free-surface elevation is updated based 
on the new pressure distribution at the free surface. 

The following set of equations describes the flow that is considered: 

V20 = O      in the fluid domain, (1) 

E = ^- = 0 and (2) 
Dt 

p = 0 on the free surface, (3) 

V0 —» U„   upstream, and (4) 

V0-n = O  on the body. (5) 

Here, 0 represents the velocity potential, p is the pressure in excess of atmospheric, U„ is the upstream 

speed of the fluid, and n is the unit-normal vector pointing out of the body. Since the pressure is 
analytically determined, via Bernoulli's equation, as a function of the fluid depth and velocity potential 
and (/) identically satisfies Equation 1, the remaining task is to compute the velocity potential and free- 
surface elevation, TJ, that simultaneously satisfy the boundary conditions. 

Finding this simultaneous solution is a difficult task. However, a systematic solution approach is to iterate 
between computing the flow beneath an approximate free surface, and using the flow solution to 
determine a better approximation to the free surface. Iteration continues until the free surface for which 
the boundary conditions are sufficiently satisfied is determined. 

Now the velocity potential and free-surface elevation are decomposed into two parts: a current 
approximation (denoted with a superscript 0), and a refinement to this approximation (denoted with a 

superscript 1). Specifically, the respective expressions are0 —> <p° + <f>x and TJ —>7]  +TJ1. Furthermore, 
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the kinematic (Equation 2) and dynamic (Equation 3) boundary conditions are combined into a single 
free-surface boundary condition 

(6) 

The use of Equation 6 results in quadratic convergence; however, up to third-order derivatives of the 
velocity-potential function are necessary. In addition to Equation 6, a "radiation condition" is imposed at 
two upstream points to keep waves from "radiating" upstream and to ensure that Equation 4 is satisfied. 
The particular radiation condition suggested by Scullen [1] is 

x^B+30z=O, (7) 

which states that the vertical component of the velocity decays in proportion to the inverse cube of 

distance. By performing the necessary derivatives and expressing the results in terms of <f)   and <j> (see 
Appendix A), a system of linear equations can be constructed whose solution determines the refinement 
to the velocity potential. With this new potential, the refinement to the free-surface elevation is obtained 
by 

nl=-P-. 
V        Pi 

(8) 

Figure 19: Schematic of free-surface representation. 

From an implementation viewpoint, the free surface is discretized with a uniform distribution of 
collocation points, and discrete sources are placed a fixed distance above each free-surface collocation 
point. Since Equation 7 is imposed in addition to Equation 6 at two upstream collocation points, two 
additional sources are used. One is placed upstream to the first collocation point, and the other is placed 
downstream of the last collocation point while maintaining the same x-axis distribution. This can also be 
thought of as eliminating the first and last collocation point that would be directly beneath these two 
sources. The number of sources and their placement are determined based on the work and conclusions of 
Scullen [1,2]. While the free-surface collocation points are moved vertically according to Equation 8, the 
free-surface sources remain fixed. Figure 19 shows a diagram of the free-surface representation. 
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Scullen also presented results for a submerged cylinder with prescribed circulation. These simulations 
were performed by specifying body collocation points, and placing sources 85% of the distance along the 
radius to these collocation points. The circulation was achieved by using a vortex placed at the center of 
the cylinder and its image above the free surface. While the reason for using the vortex image is not 
explicitly stated, it is believed that using the image uniquely sets the upstream flow conditions by forcing 
the far upstream free-surface elevation to be zero. These simulations were reproduced, and the 
configuration and results for one set of the computations are respectively given in Figure 20 and Figure 
21. 

Figure 20: Configuration for radius-to-depth ratio of 0.1333 and a Froude number of 0.3651. 

Figure 21: Nonlinear waves produced by cylinders with the above configuration and varying circulation. 
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Second, the well-established linearly-varying vortex-panel method [3,4] to compute the flow about a 
hydro/airfoil was implemented in a way that is compatible with the nonlinear free-surface solution 
approach described above. The vortex-panel method uses panels to represent the surface of an airfoil, and 
the distribution of vortex strength along each panel varies linearly from one unknown value at one end to 
another unknown value at the other end. As a result, integration along the panel is required to compute 
each panel's contribution to the global potential function (or its derivatives) at any given point in space, 
i.e. 

$ panel =Y~    J^(*' Z'*^ ' 
panel 

(9) 

Here, y{s) represents the vortex-strength distribution along the panel and 6{x, z, s) represents the angle 
between the line connecting the element ds to the point (x, z) and the x-axis. 

Figure 22: Schematic of the linearly-varying vortex-panel method. 

Each panel end point is defined as a point on the surface of the body, and the collocation points are taken 
to be the panel midpoints. As an implementation note, the N panels are ordered in a clockwise manner, 
and the surface points are obtained from an analytical correlation to the appropriate NACA 4-digit wing- 
section data. These and the above-mentioned concepts are illustrated below in Figure 22. 

It is easy to see that the Neumann boundary condition (Equation 5), which is imposed at each collocation 
point on the airfoil, involves first-order derivatives of the velocity potential and is linear with respect to 
the velocity potential. However, the integral in Equation 9 makes the derivation of the analytical 
expressions for these quantities more complicated. Typically the integration is performed in a coordinate 
system that has been rotated such that the x-axis is aligned to the panel and the first end point of the panel, 
(xp], Zpi), is at the origin. This rotated coordinate system will be referred to as the panel coordinate system 
(PCS). Given the angle, ß, between the panel and the x-axis in the global coordinate system (GCS), this 
is achieved through applying the following transformation to the x- and z-coordinates of the point of 
interest: 

X
PCS = (XGCS ~ XP\ )Cos(ß) + (zGCS - zpl )Sin(ß)     and 

Zpcs = -{X
GCS ~ xPi )Sin(ß) + (zGCS - zpl )Cos(ß) 

(10) 

(ID 
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The potential can then be obtained by simply performing the integration and arranging the result in terms 
of the unknown end-point vortex strengths. The derivatives of the velocity potential, with respect to the 
GCS, can also be obtained through using Equations 10 and 11 and applying the chain rule of 
differentiation. (Note: since * is a "dummy" variable, differentiation of Equation 9 with respect to the PCS 
can be simply taken inside of the integral and is only applicable to 6{x, z, s).) Appendix A provides 
explicit expressions for the first-order derivatives of the vortex-panel velocity potential in terms of the 
end-point vortex strengths. 

Since the boundary condition on the surface of a hydrofoil is linear with respect to the velocity potential, 
the flow solution is typically obtained by solving a single linear system of equations rather than iterating. 
To reconcile this difference in approaches, the velocity potential corresponding to a vortex panel was also 
decomposed into an approximation and a refinement to the approximation. With this in place the 
remaining task was to implement a Kutta condition to close the system of equations and to provide a 
means to establish the amount of circulation required to properly compute the flow about a lifting body. 
Typical Kutta condition implementations force the sum of the trailing-edge vortex strengths to be zero, 
but this will not take into consideration any other sources of velocity potential that might be present. So, 
an alternative approach [6] was chosen which requires the flow at a point just behind the trailing edge of 
the hydrofoil to be tangent to the extended symmetry line of the airfoil. 

~~ Modified Approach 
O  Standard Approach 

0.7 0.8 0.9 1 

Figure 23: Comparison of flow solutions around a NACA 0012 with an altered and unaltered panel 
method using 200 panels. 

To verify the modified method's implementation, solutions (see Figure 23) for the flow around a NACA 
0012 airfoil at an angle of attack of 5° were computed using both an unaltered vortex-panel method code 
from FDLIB [7] and the described modified method. Both simulations used 200 panels to represent the 
airfoil. The pressure coefficient distributions shown in Figure 23 are in very good agreement. Both 
methods display undesirable characteristics near the trailing edge. Wauquiez also points this out and 
describes another type of Kutta condition using a wake panel [4] that improves the solution near the 
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trailing edge. This Kutta condition implementation, however, was not incorporated into this work. Also 
note that the analytic correlation that was used for the airfoil does not close at the trailing edge; this could 
also explain some undesirable behavior near the trailing edge. 

Third, the two methods were combined through completing several tasks. Expressing Equation 6 in terms 
of the velocity potential (See Appendix A.) reveals that up through third-order derivatives are required for 
the nonlinear free-surface method. Only first-order derivatives are necessary for the panel method. 
Therefore, the first task was to derive the necessary higher-order derivatives of the velocity potential for a 
panel. This was accomplished by simply following the same approach that was used to derive the first- 
order derivatives, and Appendix A provides explicit expressions for the necessary derivatives. Another 
task necessary to combine the methods was to mirror the vortex panels above the free surface. This is 
directly analogous to mirroring the single vortex used in the simulations of a cylinder with circulation, 
except now we are dealing with vortex panels. The last task was to incorporate a method to simulate a 
finite-depth configuration. This could be achieved by placing sources of unknown strength outside of the 
domain and below the fluid bottom. The unknown source strengths could then be computed to satisfy the 
Neumann boundary condition along the fluid bottom. A better approach that does not increase the size of 
the linear system of equations to solve is to simply mirror every singularity about the fluid bottom. The 
latter approach implicitly satisfies the Neumann boundary condition along the fluid bottom, and it was 
utilized in this work. 

Results 

The method described above was utilized to perform simulations corresponding to configurations used in 
three sets of experiments. The first set was that of Duncan [5]; the second was performed by Furey, et al 
[8]; and the third by Walker, et al [9]. Due to limitations of the method to produce solutions for large 
wave amplitudes, results were obtained for only some of the experiments within the first two sets of 
experiments. The simulations that produced converged solutions typically involved only non-breaking 
waves or at most mildly breaking. The simulations that produced converged results are described and 
presented below. 

Duncan [5] performed experiments where a hydrofoil with a NACA 0012 wing section was moved 
through the water. The hydrofoil with a chord of 0.203 m was given a 5° angle of attack with the pivot 
point at mid chord. The speed of the hydrofoil was 0.8 m/s, and the hydrofoil was placed 0.175 m above 
the fluid bottom. In addition to these parameters, experiments were performed with differing free-surface 
heights above the hydrofoil. The free-surface heights studied include: 0.261 m; 0.236 m; 0.210 m; 0.193 
m; and 0.185 m. As the hydrofoil approaches the free surface the resulting wave amplitude increases and 
wave breaking occurs. Converged solutions were obtained for the first three free-surface heights. For each 
solution two plots are presented below. The first plot shows the free-surface elevation (with the 
experimental data, if available), and the second shows the pressure coefficient distribution on the 
hydrofoil compared with that of a hydrofoil in an infinite domain. Figure 24 through Figure 29 
respectively present the results for the first three free-surface elevations above the hydrofoil. 
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Figure 24: Free-surface elevation for Duncan's depth = 0.261 m case. 
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Figure 25: Negative pressure coefficient distribution for the above case. 
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Figure 26: Free-surface elevation for Duncan's depth = 0.236 m case. 
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Figure 27: Negative pressure coefficient distribution for the above case. 
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Figure 28: Free-surface elevation for Duncan's depth = 0.210 m case. 

Figure 29: Negative pressure coefficient distribution for the above case. 

The four experiments presented by Furey et al [8] also utilize a hydrofoil with a NACA 0012 wing 
section, but its pivot point is at the quarter-chord position and the flow moves past the hydrofoil. Here the 
fluid bottom is fixed at 0.9 m below the hydrofoil which has a chord of 1.8 m and an angle of attack equal 
to 5.5°. Both the undisturbed free-surface elevation and the free-stream velocity are allowed to vary 
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between experiments. There seems to be some contention regarding whether the reported flow velocities 
are correct; velocities obtained from an acoustic Doppler velocimiter (ADV) were also available. The 
ADV velocities were considerably larger. While converged solutions were obtained using both velocities 
for the first experiment, a solution could be produced for only the lower, non-ADV, velocity for the 
second experiment. Figure 30 and Figure 31 present results for the first experiment using each free-stream 
velocity, 1.86 m/s and 2.10 m/s. and an undisturbed free-surface elevation of 1.79 m above the hydrofoil. 
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Figure 30: Free-surface elevations for the first case of Furey et al using two different velocities. 

Figure 31: Negative pressure coefficient distribution for the above case. 
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Nonlinear Free-Surface Expressions 

This section presents the components of the free-surface boundary condition in terms of the potentials <p 

and (f>x. It is assumed that the pressure above atmospheric is defined as 

P    2 

where p is the fluid density, g is gravity, and U„ is the free-stream velocity. It is also assumed that E is 

defined as the total derivative of the pressure, i.e. 

With these definitions in place and remembering that z = 7J° on the free surface, the expressions for the 
free-surface boundary condition can be derived. While they are presented by Scullen [2], they are 
presented here as well for completeness. The various components with the corresponding expressions 
used in this work follow. 

p°t= ££+&*+8 

p\=€ti+t°A+fJ\+fA 

E
1=i{€€+€€k+fe? JV«+w°M. + 

2Uyxz+^+\gk^n 
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First-Order Vortex-Panel Velocity-Potential Derivatives 

As was stated above, the first-order derivatives of the velocity potential for a vortex panel with linearly- 
varying vortex strength are obtained by transforming to a coordinate system relative to the panel, denoted 
PCS, and utilizing the chain rule for differentiation to compute the derivatives in the global coordinate 
system (GCS). This section provides the results of such a procedure. 

Recalling the definition of the transformation from the GCS to the PCS described by Equations 10 and 
11, one can obtain the following expressions for the derivative of the PCS with respect to the GCS as 

dx 

dx, 
pcs = Cos(ß), p*2- = Sin(ß), -^ = -Sin(ß), and ^ = Cos(ß). 
GCS az GCS dx, GCS dz GCS 

Now, the derivative of the velocity potential with respect to x in the GCS becomes 

dx, 
d0   _   d<p   dxPCS  i    d0   dZpcs =Cosrß^   d<t>      c.-„/^   W 

GCS oxpcs dxGCS "PCS   "-"-GCS fa PCS dx, 

and the derivative with respect to z in the GCS is 

dx 
— Sin(ß) 

PCS dz PCS 

dz 

d(/>   _   d(/>   dxPCS t    d<p   dzPCS =       ß 

GCS uXprc ÖZr.rs      vZPr<; &Z VPCS  "'-GCS PCS  "'-GCS dx 
*+   +Cos(ß)-d* 

PCS dz PCS 

The remaining task is to express the derivatives of the panel's velocity potential in terms of the end-point 
vortex strengths, y. and yJ+l. In the PCS, the expression for 6{x, z, s) becomes 

0(x, z, s) = ArcTan 
(   z        ^ *-PCS 

\XPCS ~~s J 
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The following diagram defines the newly introduced terms. 

Higher-Order Vortex-Panel Velocity-Potential Derivatives 

In a similar fashion the higher-order derivatives of the vortex-panel velocity potential can be derived. 
Once again, the coordinate transformation definition is used along with repeated use of the chain rule. 
Further simplifications are also incorporated by using the facts that the velocity potential satisfies the 
Laplace equation, i.e. V20 = 0, and that the orders of differentiation are interchangeable. 

With all of this in mind, expressions for the necessary higher-order derivatives are given below: 

^— = [Cos\ß) - Sin2(ß))^l 2Sin{ß)Cos{ß)dx
d2^      , 

^XGCS^XGCS dXpCSdXpCS '■PCS^PCS 

—*±— = 2Sin(ß)Cos(ß)      ^      + {Cos2 (ß) - Sin2 (/?))—&- 
OXpfcOZ firs OX p^t;UX ppt; OXpfqOZ VGCSW<-GCS PCS wi-PCS 

p4- = {Cos' 09) - 3Cos(ß)Sin2 (/?))- £*- + 
VXGCS VXGCS ®XGCS dxPCS dxpcs dxpcs 

-\3< 

{3Sin(ß)Cos2(ß) - Sin\ß))- —£- ,   and 
OZpriOZpcsOZr "PCS^PCS^PCS 

a      f* , = {Sin3 iß) - 3Sin(ß)Cos2(ß))^     *'+ ^     + 
°Z GCS VZ GCS °Z GCS dxpcs dxpcs dxPCS 

•\3J 

{Cos3 {ß) - 3Cos(ß)Sin2(ß))- —?— 
dZprxdZprsOZ, 'PCSW*-PCS"*-PCS 

As before, the final task is to compute the panel velocity-potential derivatives. With the same definitions 
as above, their expressions follow: 
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